
Dr.-Ing. Mario Heiderich, Cure53
Bielefelder Str. 14
D 10709 Berlin
cure53.de · mario@cure53.de

Pentest-Report Tor Browser Apps & Tools 01.-02.2024
Cure53, Dr.-Ing. M. Heiderich, M. Wege, L. Herrera, B. Casaje, A. Belkahla, Y. Yuang

Index
Introduction

Scope

Identified Vulnerabilities

TTP-03-001 WP1: Sybil attack on Snowflake broker (Medium)

TTP-03-002 WP1: POST requests on rdsys moat lack body size limits (Medium)

TTP-03-003 WP1: rdsys moat unconditionally trusts X-Forwarded-For (Medium)

TTP-03-006 WP4: Spoofable disconnection in chat mode (High)

TTP-03-008 WP4: Joining chat without broadcast message (High)

TTP-03-009 WP4: Chat users can spoof names via control characters (Medium)

TTP-03-010 WP3: Potential phishing via task-hijacking on Android (Medium)

TTP-03-011 WP3: Potential DoS due to Deep Link misusage (Low)

Miscellaneous Issues

TTP-03-004 WP1: Limited SSRF attack through Bridgestrap (Info)

TTP-03-005 WP4: Potential DoS of address in receive mode (Low)

TTP-03-007 WP4: History tab handles newlines incorrectly (Info)

TTP-03-012 WP3: Lack of root detection and anti-debugging defenses (Low)

Conclusions

Cure53, Berlin · Feb 12, 24 1/17

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Bielefelder Str. 14
D 10709 Berlin
cure53.de · mario@cure53.de

Introduction
“We believe everyone should be able to explore the internet with privacy. We are the Tor
Project, a 501(c)(3) US nonprofit. We advance human rights and defend your privacy online
through free software and open networks.”

From https://www.torproject.org/

This report describes the results of a security assessment of The Tor Project complex, with
the focus on various Tor censorship circumvention tools, changes in the Tor browser for
Desktop and Android, as well as the OnionShare component. The project, which included a
penetration test and a dedicated source code audit, was carried out by Cure53 in January
2024.

Registered as TTP-03, the examination was requested by The Tor Project in November
2023 and then scheduled to start in early 2024 to allow both sides sufficient time to prepare.
Note that this was not the first time that Cure53 conducted a security analysis for The Tor
Project. Just last year, during TTP-01, Cure53 had a thorough look at various Tor
censorship bypass tools such as RDSys and Conjure.

The current test iteration builds on the previous work and expands the scope to allow for
more deep-dives during the analysis. In terms of the exact timeline and specific resources
allocated to TTP-03, Cure53 completed the research in late January and early February of
2024, more precisely in CW04 and CW05. In order to achieve the expected coverage for this
task, a total of thirty-four days were invested. In addition, it should be noted that a team of
six senior testers was formed and assigned to the preparations, execution, documentation
and delivery of this project.

For optimal structuring and tracking of tasks, the examination was split into four separate
work packages (WPs):

• WP1: Crystal-box penetration tests & code audits against censorship circumvention
tools & libs

• WP2: Crystal-box penetration tests & code audits of changes in Tor browser for
desktop

• WP3: Crystal-box penetration tests & code audits of changes in Tor browser for
Android

• WP4: Crystal-box penetration tests & code audits of changes in OnionShare for
desktop

As the titles of the WPs indicate, crystal-box methodology was utilized. Cure53 was provided
with the way of reaching the relevant GitHub repositories, binary builds for the relevant
desktop applications, as well as all further means of access required to complete the tests.

Cure53, Berlin · Feb 12, 24 2/17

https://cure53.de/
https://www.torproject.org/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Bielefelder Str. 14
D 10709 Berlin
cure53.de · mario@cure53.de

The project could be completed without any major problems. To facilitate a smooth transition
into the testing phase, all preparations were completed in January 2024, namely in CW03.
Throughout the engagement, communications were conducted via a private, dedicated and
shared Signal channel. Stakeholders - including the Cure53 testers and the internal staff
from The Tor Project - could participate in discussions in this space.

Although it needs to be underscored that the quality of all project-related interactions was
consistently excellent, several questions had to be posed by Cure53. These predominantly
related to slight delays with the delivery of files that were necessary in the context of the
agreed-upon scope. These minor issues could be resolved swiftly. Ongoing communications
and exchanges on Signal contributed positively to the overall outcomes of this project.
Cure53 offered frequent status updates about the test and the emerging findings. Live-
reporting was done on request of the customer, with various tickets shared on demand.

The Cure53 team succeeded in achieving very good coverage of the WP1-WP4 targets. Of
the twelve security-related discoveries, eight were classified as security vulnerabilities and
four were categorized as general weaknesses with lower exploitation potential. It should be
noted that most of the Tor components examined in the frames of TTP-03 exposed a robust
security posture.

Among the examined targets, the OnionShare desktop application stood out for having a
slightly weaker security premise on the whole. To be more specific, it suffered from
noteworthy vulnerabilities with a severity rating set to High. The inspected chat feature,
which is a highly sensitive area that must be implemented securely, was prone to several
serious bugs. This included spoofing attacks explained in tickets TTP-03-006 to TTP-03-
009.

For the OnionShare component, it must be made clear that the risks were quite paramount,
as user impersonation could be achieved. This was connected to disconnect messages
being triggered incorrectly, with the flaw translating to major privacy impact. The rest of the
codebase left Cure53 with a positive impression. Especially the Tor Browser apps seemed
solid and very much security-aware, even with regard to the newly implemented features
that have not been scrutinized by Cure53 before. The following sections first describe the
scope and key test parameters, as well as how the WPs were structured and organized.
Next, all findings are discussed in grouped vulnerability and miscellaneous categories.
Flaws assigned to each group are then discussed chronologically. In addition to technical
descriptions, PoC and mitigation advice will be provided where applicable.

The report closes with drawing broader conclusions relevant to this January-February 2024
project. Based on the test team's observations and collected evidence, Cure53 elaborates
on the general impressions and reiterates the verdict. The final section also includes tailored
hardening recommendations for the Tor complex, specifically referring to improvements that
can be made in the various censorship circumvention tools, Tor Browser for Desktop and
Android, as well as in the OnionShare component.

Cure53, Berlin · Feb 12, 24 3/17

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Bielefelder Str. 14
D 10709 Berlin
cure53.de · mario@cure53.de

Scope
• Penetration tests & code audits against the censorship circumvention tools, as well

as UI changes, in Tor Browser
◦ WP1: Crystal-box penetration tests & code audits against censorship circumvention

tools & libs
▪ Snowflake:

• https://gitlab.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake
• https://gitlab.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake-

webext
▪ Webtunnel:

• https://gitlab.torproject.org/tpo/anti-censorship/pluggable-transports/webtunnel
▪ RDSys:

• https://gitlab.torproject.org/tpo/anti-censorship/rdsys
▪ Lox:

• https://gitlab.torproject.org/tpo/anti-censorship/lox-rs
▪ Bridgstrap:

• https://gitlab.torproject.org/tpo/anti-censorship/bridgestrap
▪ OnionSprout:

• https://gitlab.torproject.org/tpo/anti-censorship/gettor-project/OnionSproutsBot
◦ WP2: Crystal-box penetration tests & code audits of changes in Tor browser for desktop

▪ Tor browser for desktop:
• https://gitlab.torproject.org/tpo/applications/tor-browser

◦ WP3: Crystal-box penetration tests & code audits of changes in Tor browser for Android
▪ Tor browser for Android:

• https://gitlab.torproject.org/tpo/applications/firefox-android
◦ WP4: Crystal-box penetration tests & code audits of changes in OnionShare for desktop

▪ OnionShare for desktop:
• https://github.com/onionshare/onionshare

◦ Test-supporting material was shared with Cure53
◦ All relevant sources were shared with Cure53

Cure53, Berlin · Feb 12, 24 4/17

https://cure53.de/
https://github.com/onionshare/onionshare
https://gitlab.torproject.org/tpo/applications/firefox-android
https://gitlab.torproject.org/tpo/applications/tor-browser
https://gitlab.torproject.org/tpo/anti-censorship/gettor-project/OnionSproutsBot
https://gitlab.torproject.org/tpo/anti-censorship/bridgestrap
https://gitlab.torproject.org/tpo/anti-censorship/lox-rs
https://gitlab.torproject.org/tpo/anti-censorship/rdsys
https://gitlab.torproject.org/tpo/anti-censorship/pluggable-transports/webtunnel
https://gitlab.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake-webext
https://gitlab.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake-webext
https://gitlab.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Bielefelder Str. 14
D 10709 Berlin
cure53.de · mario@cure53.de

Identified Vulnerabilities
The following section lists all vulnerabilities and implementation issues identified during the
testing period. Notably, findings are cited in chronological order rather than by degree of
impact, with the severity rank offered in brackets following the title heading for each
vulnerability. Furthermore, each ticket has been given a unique identifier (e.g., TTP-03-001)
to facilitate any future follow-up correspondence.

TTP-03-001 WP1: Sybil attack on Snowflake broker (Medium)
While testing the Snowflake censorship circumvention broker, it was discovered that no rate-
limit mechanism has been deployed in the client/proxy offer components. As a result,
malicious actors could masquerade as Snowflake proxies to send large amounts of non-
functional connection offers to the broker. Thus, the clients would be matched with non-
functional proxies, which would artificially make it much more difficult to connect.

Malicious actors could also send large amounts of client requests, which could artificially
saturate the real proxies on the network.

It is recommended to implement an IP-based rate-limit system, as well as possibly consider
crafting a proof-of-work system to prevent these kinds of attacks.

TTP-03-002 WP1: POST requests on rdsys moat lack body size limits (Medium)
While testing the rdsys moat distributor, it was discovered that the
/moat/circumvention/settings endpoint does not properly limit the size of the request’s body.
A malicious actor could use this to cause a DoS condition on the server by sending a large
JSON document. This would cause the server to crash due to an out-of-memory condition.
From there, attackers could DoS the server with very few resources, impacting the
availability of the bridge distributor.

Affected file:
pkg/presentation/distributors/moat/web.go

Affected code:
func circumventionSettingsHandler(w http.ResponseWriter, r *http.Request) {

w.Header().Set("Content-Type", "application/json")
enc := json.NewEncoder(w)

var request circumventionSettingsRequest
dec := json.NewDecoder(r.Body)
err := dec.Decode(&request)

It is recommended to use a io.LimitReader with a reasonable maximum body size limit (e.g.,
100KB) to prevent attacks of this nature.

Cure53, Berlin · Feb 12, 24 5/17

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Bielefelder Str. 14
D 10709 Berlin
cure53.de · mario@cure53.de

TTP-03-003 WP1: rdsys moat unconditionally trusts X-Forwarded-For (Medium)
While testing the rdsys moat circumvention settings distributor, it was discovered that the
server trusted the X-Forwarded-For header without offering an ability to configure a “trust
proxy” setting. In the deployment of a moat distributor that is not behind a trusted reverse-
proxy, this would allow clients to spoof their IP address, fostering Sybil attacks against the
distributor.

Affected file:
pkg/presentation/distributors/moat/web.go

Affected function:
ipFromRequest

A configuration option for trust proxies should be implemented and be specific about how
many proxies should be trusted by the server. This will help prevent abuse of the overly
trusting configurations.

TTP-03-006 WP4: Spoofable disconnection in chat mode (High)
While testing the chat service, it was discovered that users could spoof the “disconnect”
event without actually disconnecting their socket.io connection. This makes the server think
that a user has been disconnected, removing them from the connected_users list. At the
same time, the user retains the capacity to receive and send messages under the name that
they have used to already disconnect themselves from the service.

To spoof the disconnect event, an attacker can either patch the socket.io client library,
removing the portion that prevents clients from manually emitting the disconnect event, or
they can use a custom socket.io client.

An attacker could use this exploit to impersonate users or to spy on them. For example, if
Alice and Bob both have access to the chatroom, Bob can set his username to Alice while
the real Alice is factually disconnected. Bob can then spoof the disconnection operation.
When the real Alice joins the chatroom again, she can set her name to Alice without any
hurdles. At this point, Bob will receive all messages sent to the room and can inject chat
messages into the room in the name of “Alice”.

In this “ghost” state it is possible for an attacker to change their username an unlimited
number of times without any broadcast message. This can be done by using the
update_username event, due to an exception that is thrown halfway through the event
handler.

Cure53, Berlin · Feb 12, 24 6/17

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Bielefelder Str. 14
D 10709 Berlin
cure53.de · mario@cure53.de

The exception causes the session username to be updated but fails to address this issue in
the global member list. When combined with TTP-03-009 for an alternative username
spoofing attack, the approach would not even require the attacker to know what a user will
call themselves in terms of username-choice.

Affected file:
cli/onionshare_cli/web/chat_mode.py

Affected code for fake disconnection bug:
@self.web.socketio.on("disconnect", namespace="/chat")
def disconnect():
 """Sent by clients when they disconnect.
 A status message is broadcast to all people in the server."""
 if session.get("name") in self.connected_users:
 self.connected_users.remove(session.get("name"))
 emit(
 "status",
 {
 "msg": "{} has left the room.".format(session.get("name")),
 "connected_users": self.connected_users,
 },
 broadcast=True,
)

Affected code for silent username change:
@self.web.socketio.on("update_username", namespace="/chat")
def update_username(message):
 """Sent by a client when the user updates their username.
 The message is sent to all people in the server."""
 current_name = session.get("name")
 new_name = message.get("username", "").strip()
 if self.validate_username(new_name):
 session["name"] = new_name
 self.connected_users[
 self.connected_users.index(current_name)
] = session.get("name")

PoC:
https://files.larry.science/f/rWLAXJqg.mjs

Cure53, Berlin · Feb 12, 24 7/17

https://cure53.de/
https://files.larry.science/f/rWLAXJqg.mjs
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Bielefelder Str. 14
D 10709 Berlin
cure53.de · mario@cure53.de

Steps to reproduce:

1. Start OnionShare with the --local-only flag. Enable chat mode.
2. Change the port in the PoC code to the one that OnionShare is listening on.
3. Run node {exploit}.mjs
4. Notice the following:

1. The chat log says that the user has disconnected, and the user is accordingly
no longer listed on the sidebar.

2. The user can still read and send messages using the username that they have
originally joined with.

3. The user can change their username without any messages being broadcasted.
4. Others can change their usernames to be the same as the user in question.

It is recommended to forcefully terminate connections using flask_socketio.disconnect1 in
the disconnect handler. This should be done in place of just assuming that the connection is
being successfully closed.

TTP-03-008 WP4: Joining chat without broadcast message (High)
While testing the chat service, it was discovered that users can join the chatroom without
sending a join message or being displayed on the list of the connected users. To that end,
the covertly joining users could silently spy on other users.

By not sending a session cookie with the socket.io connection, an exception is thrown when
attempting to validate the username. This skips the process of adding the user to the list of
connected users, yet still allows users to receive all chat messages sent to the room.

The problem means that attackers can impersonate users, with the same attacks described
also in TTP-03-006 and TTP-03-009.

Affected file:
cli/onionshare_cli/web/chat_mode.py

Affected code:
@self.web.socketio.on("connect", namespace="/chat")
def server_connect():
 """Sent by clients when they enter a room.
 A status message is broadcast to all people in the room."""
 if self.validate_username(session.get("name")):
 self.connected_users.append(session.get("name"))

1 https://flask-socketio.readthedocs.io/en/latest/api.html#flask_socketio.disconnect

Cure53, Berlin · Feb 12, 24 8/17

https://cure53.de/
https://flask-socketio.readthedocs.io/en/latest/api.html#flask_socketio.disconnect
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Bielefelder Str. 14
D 10709 Berlin
cure53.de · mario@cure53.de

PoC:
https://files.larry.science/f/0TBwWwcI.mjs

Steps to reproduce this issue are the same as those for TTP-03-006. The PoC simply joins
the chat silently and echoes all messages.

It is recommended to ensure that users have a verifiably valid session upon joining.

TTP-03-009 WP4: Chat users can spoof names via control characters (Medium)
While testing the chat service, it was discovered that users can use ASCII control characters
in their usernames, even though these should get removed during HTML sanitization on the
web client. Hence, attackers can spoof usernames of other users relying on the service.

When combined with TTP-03-008 or TTP-03-006, this attack can happen in a manner that is
completely silent.

Affected file - lack of validation:
cli/onionshare_cli/web/chat_mode.py

Affected code - lack of validation:
def validate_username(self, username):
 username = username.strip()
 return (
 username
 and username.isascii()
 and username not in self.connected_users
 and len(username) < 128
)

Affected file - buggy sanitization:
cli/onionshare_cli/resources/static/js/chat.js

Affected code - buggy sanitization:
var sanitizeHTML = function (str) {
 var temp = document.createElement('span');
 temp.textContent = str;
 return temp.innerHTML;
};

PoC:
https://files.larry.science/f/slTqDE1X.mjs

Cure53, Berlin · Feb 12, 24 9/17

https://cure53.de/
https://files.larry.science/f/slTqDE1X.mjs
https://files.larry.science/f/0TBwWwcI.mjs
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Bielefelder Str. 14
D 10709 Berlin
cure53.de · mario@cure53.de

Steps to reproduce:

1. Start OnionShare with the --local-only flag. Enable chat mode.
2. Change the port in the PoC code to the one that OnionShare is listening on.
3. Join the chat and choose the name “Alice”.
4. Run node {exploit}.mjs.
5. Notice that another “Alice” joins the room and begins to talk.

To mitigate this flaw, it is recommended to ensure that usernames can only contain printable
ASCII characters.

TTP-03-010 WP3: Potential phishing via task-hijacking on Android (Medium)
Testing confirmed that the Android app does not offer sufficient protection against task
hijacking attacks.

The launchMode for the HomeActvity activity is currently set to singleTask for Android API
level 29 and lower, which mitigates task hijacking via StrandHogg 2.02 whilst rendering the
app vulnerable via older techniques such as StrandHogg3 and other techniques documented
since 20154.

The described vulnerability was patched by Google in March 2019 for Android versions 28
and newer. Since the android app supports devices from Android 5 (API level 21), this
renders all users running Android 5-8.1 vulnerable, as well as affecting users running
unpatched Android devices. The latter is still common in the modern era.

A malicious app could leverage this weakness to manipulate the way in which users interact
with the app. Specifically, this could be instigated by relocating a malicious attacker-
controlled activity within the screen flow of the user, which may be useful toward instigating
phishing or Denial-of-Service (DoS) attacks, as well as theft of user-credentials.

Affected file:
fenix/app/src/main/AndroidManifest.xml

Affected code:
 <activity
 android:name=".HomeActivity"
 android:exported="true" android:configChanges="keyboard|
keyboardHidden|mcc|mnc|orientation|screenSize|layoutDirection|
smallestScreenSize|screenLayout"
 android:launchMode="singleTask"
 android:resizeableActivity="true" [...]

2 https://www.helpnetsecurity.com/2020/05/28/cve-2020-0096/
3 https://www.helpnetsecurity.com/2019/12/03/strandhogg-vulnerability/
4 https://s2.ist.psu.edu/paper/usenix15-final-ren.pdf

Cure53, Berlin · Feb 12, 24 10/17

https://cure53.de/
https://s2.ist.psu.edu/paper/usenix15-final-ren.pdf
https://www.helpnetsecurity.com/2019/12/03/strandhogg-vulnerability/
https://www.helpnetsecurity.com/2020/05/28/cve-2020-0096/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Bielefelder Str. 14
D 10709 Berlin
cure53.de · mario@cure53.de

To aid understanding of this vulnerability, a demonstration of a potential exploitation
scenario was created and can be consulted via a video linked next.

PoC video:
https://cure53.de/exchange/97865826534172365/TaskHijacking%20PoC.mov

To mitigate this issue, Cure53 advises implementing a selection of appropriate
countermeasures. One potential solution would be to set the task affinity of the exported
activities to an empty string via android:taskAffinity="". This forces Android to create a
random name which any future attacker would have difficulty predicting. Additionally, setting
the launchMode to singleInstance can be encouraged, as this approach enforces the
creation of a new task for each activity.

TTP-03-011 WP3: Potential DoS due to Deep Link misusage (Low)
The Android application employs Deep Links for various tasks, such as initiating the opening
of a new tab. Deep Links are URLs designed to guide users directly to specific sections
within an application.

The observation was made that no limitation is imposed on the number of tabs that can be
opened, presenting an opportunity for a malicious app to exploit this vulnerability. This could
potentially result in the initiation of numerous tabs, leading to a Denial-of-Service (DoS)
scenario. In practice, high memory usage would take effect on the victim's phone.

To aid understanding of this vulnerability, a demonstration of a potential exploitation
scenario was created and can be consulted next in the linked video.

PoC video:
https://cure53.de/exchange/97865826534172365/DoS%20PoC.mov

PoC app:
https://cure53.de/exchange/97865826534172365/Dos_poc.apk

To mitigate this issue, Cure53 recommends refraining from opening a new tab for each
execution. This action should be restricted, based on the package name of the application
sending the intent.

For a more enduring solution, it is recommended to reconsider the reliance on Deep Links,
favoring either App Links or modifying the design to impose restrictions on arbitrary access
from other applications. It needs to be acknowledged that malicious applications can easily
disrupt user-activity now by launching the exported activities and abusing the Deep Links
available.

Cure53, Berlin · Feb 12, 24 11/17

https://cure53.de/
https://cure53.de/exchange/97865826534172365/Dos_poc.apk
https://cure53.de/exchange/97865826534172365/DoS%20PoC.mov
https://cure53.de/exchange/97865826534172365/TaskHijacking%20PoC.mov
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Bielefelder Str. 14
D 10709 Berlin
cure53.de · mario@cure53.de

Miscellaneous Issues
This section covers any and all noteworthy findings that did not incur an exploit but may
assist an attacker in successfully achieving malicious objectives in the future. Most of these
results are vulnerable code snippets that did not provide an easy method by which to be
called. Conclusively, whilst a vulnerability is present, an exploit may not always be possible.

TTP-03-004 WP1: Limited SSRF attack through Bridgestrap (Info)
Bridgestrap was discovered to have no protection against SSRF attacks. Specifically, the
Webtunnel transport allows an attacker to send HTTP GET requests to an arbitrary path on
web servers. If a bridge is tested that resolves to an internal IP, a limited SSRF attack could
be abused against internal services on the Tor Project’s infrastructure.

There are a number of advanced SSRF techniques that could result in an RCE if specific
types of internally hosted services become available. For example, using the TLS mode of
Webtunnel, an attacker could abuse the TLS Poison5 attack against an internal Memcached
database.

It is recommended to ensure that deployments of Bridgestrap have zero access to private
resources. Alternative solutions involve ensuring that bridges do not resolve to private IP
addresses that are vulnerable to DNS rebinding attacks. This would require additional
protections to mitigate the issue in a comprehensive manner.

TTP-03-005 WP4: Potential DoS of address in receive mode (Low)
Testing confirmed that the text submitted during the file upload process in the receive mode
is unrestricted. This potentially lets malicious users upload a file along with an extensive
message, consequently leading to a surge in memory usage.

By sending repeated requests with identical payloads, this exploit could trigger a Denial-of-
Service in the receive mode. As such, it would result in excessive memory consumption on
the user's PC that utilizes OnionShare.

To mitigate this issue, Cure53 recommends incorporating checks and imposing restrictions
on the lengths of the text parameter, so as to prevent any potential misuse of this item.

5 https://i.blackhat.com/USA-20/Wednesday/us-20-Maddux-When-TLS-Hacks-You.pdf

Cure53, Berlin · Feb 12, 24 12/17

https://cure53.de/
https://i.blackhat.com/USA-20/Wednesday/us-20-Maddux-When-TLS-Hacks-You.pdf
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Bielefelder Str. 14
D 10709 Berlin
cure53.de · mario@cure53.de

TTP-03-007 WP4: History tab handles newlines incorrectly (Info)
Testing confirmed that the history tab lacks optimal handling for newlines when operating in
either receive or share mode. This inadequacy creates a potential issue, allowing for the
manipulation of history logs and opening avenues for spoofing. Manipulation of this kind
could deceive users or provide false information regarding the actual authenticity of the logs.

Notably, the impact of this problem was appropriately downgraded to Info because attacks
would be limited to phishing attempts or tricking the user in the current usage context.

Steps to reproduce:

1. Start OnionShare and launch the receive or share mode.
2. Visit the OnionShare address and append the following to the URL:

http://kufbf2eh5wcxxxxxmht2toi246qaaedtdid.onion/ %0a%0d%0a%0d
3. Observe mishandling of newlines within the history tab.

To mitigate this issue, Cure53 recommends stripping newlines from user-input before
showing the URL in the history tab.

TTP-03-012 WP3: Lack of root detection and anti-debugging defenses (Low)
Testing confirmed that the current implementation failed to offer root detection and anti-
debugging mechanisms. As stipulated in the OWASP MASTG6 guidelines, it is paramount
for every Android application to incorporate these features to enhance the overall
effectiveness of the anti-tampering schemes, as well as to strengthen the mobile app’s
security resilience in general.

To mitigate this issue, Cure53 recommends incorporating a root detection library. With the
revised protection, the applications would alert users running on rooted devices. Although
this is not considered a comprehensive safeguard, the implementation would suffice toward
informing users about the possible dangers associated with operating the app on rooted
devices.

6 https://github.com/OWASP/owasp-mastg

Cure53, Berlin · Feb 12, 24 13/17

https://cure53.de/
https://github.com/OWASP/owasp-mastg
http://kufbf2eh5wcxxxxxmht2toi246qaaedtdid.onion/%0A%0D%0A%0D
http://kufbf2eh5wcxxxxxmht2toi246qaaedtdid.onion/%0A%0D%0A%0D
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Bielefelder Str. 14
D 10709 Berlin
cure53.de · mario@cure53.de

Conclusions
Cure53 generally concludes this January-February 2024 test of The Tor Project on a
positive note. Multiple components of the Tor desktop applications and censorship
circumvention tools were found to be hard-to-bypass and safe from major security flaws. As
a sole exception, the OnionShare component has been proven to require more work, as it
was associated with the most severe issues spotted during TTP-03. More broadly, it is
hoped that the list of findings - which envelops eight vulnerabilities and four general
weaknesses - can inform fine-tuned security measures for The Tor Project.

To reiterate, most of the censorship evasion tools consisted of clean, idiomatic Go code with
good error handling. The parameters made the code easy to read and audit. Lox was an
outlier here, instead opting for Rust. Still, this item retained high quality, without any use of
unsafe being noted. OnionSprout was the only project that used a scripting language
(Python), but it was judged as well-written, with no bugs to report.

As for the findings, Cure53 noted that the Tor Project has Sybil attack protections against
the majority of the bridge distributor platforms. However, the Snowflake bridge distributor
had no such protection (see TTP-03-001), which could allow attackers to cripple the
network. The attack would rely on creating a large number of fake snowflakes or requesting
to connect to large numbers of snowflakes without actually sending any data.

Next, rdsys also had a possible avenue for the Sybil attack depending on how the
deployment is actually done. If it is used without a reverse proxy in front of it, an attacker
could spoof the incoming IP of their requests to mount an effective Sybil attack on the
platform. This could result in the entire bridge network being exposed. More care should be
given to ensuring that all request body handlers for Go-based applications use body size
limits to prevent DoS caused by request body excessive in size (TTP-03-002).

The Tor team provided a detailed list of commits and file review lists before the security
assessment began. Additional commits were made available during the test, which proved
extremely valuable in identifying critical areas of interest and sharpening the scope and its
definition. This material allowed the testing team to swiftly familiarize themselves with all
relevant features and changes, enabling them to plan and focus their efforts effectively.

With the aid of the list of commits, the testing team conducted a comprehensive code
review, focusing on the relevant code changes. Specifically for WP1, no vulnerabilities were
found, demonstrating a very good outcome for the included targets.

Regarding the client-side and UI components in scope, testers searched for postMessage
issues, prototype-pollution, DOM XSS sinks, and similar input-manipulation issues but found
none.

Cure53, Berlin · Feb 12, 24 14/17

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Bielefelder Str. 14
D 10709 Berlin
cure53.de · mario@cure53.de

Attempts to access privileged pages (such as about:preferences and about:torconnect) and
expand the attack surface were made through client-side and server-side redirects, as well
as other features that allow opening pages and tabs. No significant findings were made.

The changes in the captive portal were analyzed, with additional checks conducted on the
redirection functionality. It was determined that proper safeguards were implemented to
prevent access to privileged pages and access was restricted accordingly. The usage of
unsafe protocols appears properly blocked.

Similarly, several regex checks were implemented to prevent the usage of corrupted data for
malicious bridges and proxies, which were thoroughly tested for potential issues. Attempts to
corrupt the torc file saved to disk were fruitless.

The Lox browser implementation was reviewed, especially in terms of the lox-wasm library
that is exposed to privileged pages in the browser. Dynamic testing was conducted against
the exposed functions.

The Tor Browser is implemented as a series of patches over Mozilla Firefox. This helps to
greatly reduce the attack surface of the Tor Browser, as it is built over a battle-tested
browser with a strong security foundation. As such, the team gave a lot of attention to areas
of the browser implementing new or custom features that are not present in the base Firefox
deployment.

The Tor functionality of the browser was heavily scrutinized, as finding a way to bypass the
Tor network and leak a user's IP address or identity would be a significant security issue.
Common methods to leak IPs such as WebRTC were disabled, and the testing team was
unable to find any routes to bypass the Tor circuit in this fashion.

Other browser features such as the new identity feature were also examined, with the
security team attempting to use various JavaScript APIs to bypass the clearing of user data,
but no issues were found either.

When examining the components in scope, Cure53 had access to the binaries of the Tor
browser mobile application. These were perused via the shared build, while access to
relevant sources was fostered by the generally accessible GitHub repository.

Before the discussion of findings, it should be noted that the mobile application has been
mainly written with Kotlin, with which all of the code parts for the app are being handled.
Cure53 therefore started their inspection with a look at the platform-specific implementations
of the app. Afterwards, the testers continued the audit by investigating the code that is
shipped in the app with a focus on the commits shared by the Tor Browser team.

Cure53, Berlin · Feb 12, 24 15/17

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Bielefelder Str. 14
D 10709 Berlin
cure53.de · mario@cure53.de

The attack surface of the app was explored, with Cure53 focusing on how the Android
application fit into its ecosystem. To that end, handling of communication between the app
and the platform APIs was also checked. As it turned out, the application does not provide
the best protections in this area. Specifically, possibilities of successful abuse through well-
known attacks such as Android task hijacking were noted, as outlined in TTP-03-010.

In addition, the exported activities of the Android application miss out on proper input
validation. This allows malicious applications installed on the device to start some kind of
Denial-of-Service attacks against the vulnerable application. More details on this matter can
be found in TTP-03-011. It was also noted that the application did not have any anti-
debugging or root/jailbreak detection mechanisms. This significantly facilitated the
debugging process, as highlighted in TTP-03-012.

While inspecting for occurrence of confidential data exposure, Cure53’s analysis delved into
the examination of unsafe data logging and storage practices. However, no issues have
been identified in this realm.

Certain pivotal components within the application were deliberately not exported, effectively
constraining the attack surface and proactively mitigating potential exploit avenues for
malicious applications. The Cure53 team meticulously scrutinized the source code to
pinpoint vulnerabilities that could potentially compromise access to these protected
components, thereby creating a cascade effect of impactful vulnerabilities when exploited
together. As of now, no issues of concern have been identified.

A comprehensive examination was conducted on the various modes of the OnionShare
desktop app, aiming to identify vulnerabilities such as path traversals and web application
issues, including Cross-Site Scripting, Server-Side Template Injection (SSTI), or CSP
bypasses. The assessment of the generated websites within each mode yielded positive
results, showcasing a commendable level of security that effectively mitigated common
vulnerabilities.

Upon closer inspection of the generated web apps in the receive mode, it was observed that
the application lacked proper enforcement of limits on the text values. This deficiency posed
a potential risk of a Denial of Service (DoS) attack, as explained in TTP-03-005.

Cure53's meticulous analysis of the Python code confirmed secure handling of user-input.
However, within this domain, a minor issue was identified in the history tab. This item could
be susceptible to manipulation with newlines, as detailed in TTP-03-007.

Overall, OnionShare is a well-written Python web application with effective protections
against most types of attacks related to file sharing and website functionality. It boasts
robust protections against all forms of local file inclusion (LFI) attacks and no significant
vulnerabilities were identified in either of the two services.

Cure53, Berlin · Feb 12, 24 16/17

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Bielefelder Str. 14
D 10709 Berlin
cure53.de · mario@cure53.de

Nevertheless, more care should be taken to ensure that the chat service is protected against
various methods of session manipulation that resulted in possible impersonation attacks
(see TTP-03-006, TTP-03-008 and TTP-03-009) as well as problems that can be deemed as
posing silent surveillance attack risks (see TTP-03-006 and TTP-03-008).

Most vulnerabilities were brought on by incorrect assumptions on how the flask socket.io
integration works, such as the assumption that the disconnect event can only be triggered
when a client’s session has been destroyed (TTP-03-006) or that errors would cause the
connect handler to cancel the connection (TTP-03-008). Username validation was also
insufficient. Through the use of unicode control characters, it was possible to impersonate
other users (TTP-03-009). In general, explicit error handling should be used when events
are received to prevent cases where an event handler executes halfway before erroring out
on a certain line and failing to complete a critical task.

The overall security posture of the Tor Browser mobile app received a favorable rating, with
only minor issues identified during this Cure53 assessment. The app's security measures
contribute to an elevated security posture of the mobile application on the whole.

In sum, the analysis - as conducted by Cure53 in early 2024 - generally revealed high-
quality code being used throughout the application, with clear and informative comments
accompanying key functionalities. Secure coding practices and input validation/sanitization
are consistently implemented, effectively mitigating common security vulnerabilities.
Addressing all of the reported findings, however, remains crucial for further strengthening
the app's security.

The Cure53 team's overall evaluation of the Tor Browser mobile app's security is positive.
The application demonstrated a strong foundation with no major vulnerabilities detected in
the frames of TTP-03. Resolving the highlighted minor flaws can further enhance the
application's security and user-protection.

Cure53 would like to thank Gaba, Shelikhoo, Cecylia, Micah and Richard from the Tor
Project team for their excellent project coordination, support and assistance, both before and
during this assignment.

Cure53, Berlin · Feb 12, 24 17/17

https://cure53.de/
mailto:mario@cure53.de

	Pentest-Report Tor Browser Apps & Tools 01.-02.2024
	Index
	Introduction
	Scope
	Identified Vulnerabilities
	TTP-03-001 WP1: Sybil attack on Snowflake broker (Medium)
	TTP-03-002 WP1: POST requests on rdsys moat lack body size limits (Medium)
	TTP-03-003 WP1: rdsys moat unconditionally trusts X-Forwarded-For (Medium)
	TTP-03-006 WP4: Spoofable disconnection in chat mode (High)
	TTP-03-008 WP4: Joining chat without broadcast message (High)
	TTP-03-009 WP4: Chat users can spoof names via control characters (Medium)
	TTP-03-010 WP3: Potential phishing via task-hijacking on Android (Medium)
	TTP-03-011 WP3: Potential DoS due to Deep Link misusage (Low)

	Miscellaneous Issues
	TTP-03-004 WP1: Limited SSRF attack through Bridgestrap (Info)
	TTP-03-005 WP4: Potential DoS of address in receive mode (Low)
	TTP-03-007 WP4: History tab handles newlines incorrectly (Info)
	TTP-03-012 WP3: Lack of root detection and anti-debugging defenses (Low)

	Conclusions

